Abstract. Prostate cancer (PCa) is the most commonly diagnosed male malignancy and the second leading cause of male cancer-related deaths. miR-141 has been demonstrated to be inversely correlated with tumorigenicity. In the present study, we investigated the effect of miR-141 and runt-related transcription factor 1 (RUNX1) on PCa cells. We determined that miR-141 was expressed at a low level and RUNX1 was expressed at a high level in PCa tissues in comparison to that in adjacent normal tissues. Upregulation of miR-141 significantly inhibited cell growth, migration and invasion, and promoted cell apoptosis in PCa cells. Furthermore, miR-141 overexpression suppressed the expression of MMP-2 and MMP-9, and increased the expression of FOXO1 and p21. However, overexpression of RUNX1 could antagonize the effects of miR-141 on PCa cells. Our findings demonstrated that miR-141 could suppress cell growth, migration and invasion and induce cell apoptosis by targeting RUNX1 in PCa cells. Thus, miR-141/RUNX1 play critical roles in the progression of PCa and may be promising targets for the diagnosis and treatment of PCa.

Introduction

Prostate cancer (PCa) is the most common malignant tumor and the second leading cause of death in males all over the world. Although the diagnosis and treatment of PCa has greatly improved in recent years, the prognosis of PCa remains unsatisfactory due to the lack of knowledge of the molecular mechanisms of PCa development and progression. Therefore, there is a strong need for the development of new biomarkers and therapeutic targets that would be clinically useful in the treatment and diagnosis of PCa patients.

MicroRNAs (miRNAs) are single-stranded, short non-coding RNAs (~22-25 nt) that regulate mRNA expression at the post-transcriptional level by binding to the 3'-untranslated region (3'-UTR) region of the target mRNA. MiRNAs are frequently dysregulated in human cancer, and function as either oncogenes or tumor suppressors. Moreover, they have been demonstrated to play important roles in diverse biological and pathological processes, such as cellular proliferation, differentiation, metastasis, immune response, metabolism and apoptosis. Specifically, it has been suggested that miR-373 regulates cell proliferation, apoptosis, senescence, migration and invasion in several cancers (1). It has also been demonstrated that the expression level of miR-1 could be a novel predictive biomarker for PCa recurrence (2). In addition, one of the miR-200 family members, miR-141, may induce negative effects on the different clinical outcomes of prostate, ovarian, colon and breast cancers (3-5).

Runt-related transcription factor 1 (RUNX1) plays an important role in the maintenance of lineage differentiation, the generation of hemopoietic stem cells and the proliferation of stem cells (6-9). RUNX1 was originally considered to act as a tumor suppressor in myeloid leukemia. In recent years, a few studies have indicated that RUNX1 regulated diverse cancer cell growth, survival and differentiation (10-12). Nevertheless, the effects of miR-141 and RUNX1 on PCa development have not been investigated.

In the present study, we determined that miR-141 was downregulated in PCa tissues and PCa cells. We demonstrated that overexpression of miR-141 could suppress cell growth, migration and invasion and induce cell apoptosis via targeting of RUNX1 in PCa cells.

Materials and methods

Tissue samples. Prostate cancer (PCa) tissue samples were recruited from 55 patients who were pathologically diagnosed with PCa and underwent surgery at Jinling Hospital, School of Medicine, Nanjing University between June 2014 and June 2016. The adjacent normal tissues were representative of tissues that were located ~2-5 cm from tumors that were confirmed to contain no cancer cells. All tissue samples were immediately snap-frozen in liquid nitrogen and stored in a refrigerator at -80°C. Written informed consent was obtained from all patients, and the study was approved by the Institutional Ethics Committee.
Committee of Nanjing Medical University. Additionally, all of the experiments were carried out under compliance with the government policies and the Helsinki Declaration.

Cell culture and transfection. The human PCa cell lines DU145 and PC-3 and the normal prostate epithelial cell line RWPE-1 were obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA), and were maintained in RPMI-1640 medium (Gibco, Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) (Gibco-BRL, Invitrogen, Paisley, UK), 100 U/ml of penicillin and 100 µg/ml of streptomycin at 37˚C and 5% CO2. miR-141 mimics, naked RUNX1 cDNA, and negative controls (GenePharma, Shanghai, China) were used in transfection experiments with Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions.

RNA isolation and qRT-PCR. Total RNA was isolated from tissue samples and cell lines using TRizol reagent (Life Technologies, Carlsbad, CA, USA) in line with the manufacturer's instructions. The miRNA or mRNA levels were detected using the 2-ΔΔCT method. The GAPDH mRNA level was used for normalization in the detection of the mRNA levels, and human U6 RNA was used as an internal control. The primers used were as follows: miR-141 forward, 5'-GTCCTACCTTTCCAGTACAGTGGT-3' and reverse, 5'-AGGCATCTTTTACAGCAGCAGTGT-3'; RUNX1 forward, 5'-CCAGGGUGCAAGAUUUAUAUTT-3' and reverse, 5'-AUUUAUACUUGCAACUGGTT-3'; U6 forward, 5'-CTCGCTTCGGCAACACA-3' and reverse, 5'-AAGCTTCAAGAATTTGCG-3'; GAPDH forward, 5'-GGAAACCTTGGACATGGTGCT-3' and reverse, 5'-GGGAGATTGGTTGGTTCGCT-3'. The thermo cycling conditions for RT-qPCR were: 95˚C for 3 min, then 95˚C for 30 sec, 55˚C for 30 sec and 74˚C for 2 min for 40 cycles and finally 74˚C for 10 min. All samples were tested in triplicate.

Dual-luciferase reporter assay. The wild-type and mutated 3'-UTR sequences of RUNX1 mRNA containing the miR-141 targeting sequence (362H01; Invitrogen) were cloned into the pGL3 basic plasmid (GenScript, Nanjing, China), and were named respectively pGL3-RUNX1 and pGL3-RUNX1-mut, and the primer was forward, 5'-ACTACCCTGCAGAGTGT-3' and reverse, 5'-TTTTGAAGCGCAACTTGGCC-3'. Cells were cultured to 80% confluence in a 6-well plate, and transfected with 100 ng of pGL3-RUNX1, pGL3-RUNX1-mut, 50 nM of miR-141 mimics and the negative control, respectively. Firefly and Renilla luciferase activities were assessed consecutively using the Dual-Luciferase Assay (Promega, Madison, WI, USA) after 48 h of transfection according to the manufacturer's protocols. Transfection was repeated 3 times in triplicate.

Protein extraction and western blotting. The tissues and cells were lysed with RIPA buffer with protease inhibitors and PhosSTOP (Roche, Basel, Switzerland). The protein concentration was determined using a BCA Protein Assay kit (Pierce Biotechnology, Rockford, IL, USA). Protein (10 µg) was loaded per lane, and separated by 10% SDS-polyacrylamide electrophoresis. Then, protein was transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA), blocked, incubated with primary antibodies at 4˚C overnight, and further incubated with secondary antibodies. The blots were visualized with an ECL reagent (Millipore). ImageJ software was used to quantify western blotting data. The primary antibodies used were anti-RUNX1 (dilution 1:1,000; rabbit polyclonal; cat. no. 4334), anti-FOXO1 (dilution 1:1,000; rabbit polyclonal; cat. no. 9454), anti-p21 (dilution 1:1,000; mouse monoclonal; cat. no. 2946), anti-MMP-2 (dilution 1:1,000; rabbit monoclonal; cat. no. 87809), anti-MMP-9 (dilution 1:1,000; rabbit monoclonal; cat. no. 15561) [all from Cell Signaling Technology (CST) Danvers, MA, USA] and anti-GAPDH (dilution 1:1,000; mouse monoclonal; cat. no. 60004-1-ig; ProteinTech, Wuhan, China). The secondary antibodies used were goat anti-rabbit IgG H&L (HRP) (dilution 1:5,000; cat. no. ab6721), goat anti-mouse IgG H&L (HRP) (dilution 1:5,000; cat. no. ab6789; both from Abcam, Cambridge, MA, USA).

Cell proliferation and colony formation assays. A colony formation assay was also used to detect cell proliferation. Cells (50-150/well) were seeded in a 6-well plate. The cells were allowed to incubate at 37˚C for 14 days, and then the cells were stained with Giemsa solution after 3 washes with PBS. The total number of colonies was calculated from 7 random fields. All experiments were performed in triplicate.

Cell proliferation was detected with a Cell Counting Kit-8 (CCK-8) assay (Beyotime, Nantong, China) after 24, 48 and 72 h of transfection according to the manufacturer's protocol. The absorbance was assessed using the Tecan Infinite M200 Multi-Mode Microplate Reader (Tecan Benelux BVBA, Mechelen, Belgium) at 450 nm.

Cell cycle and apoptosis analysis. For the cell cycle assay, at 48 h post-transfection, the cells were collected and assessed using a BD Biosciences FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). For the cell apoptosis analysis, the cells were harvested and stained with an Annexin V-FITC/propidium iodide kit (Beyotime Institute of Biotechnology, Shanghai, China) according to the manufacturer's instructions. Data were analyzed by flow cytometry. All experiments were performed in triplicate independently.

Migration and invasion assays. Cell migration was assessed by wound healing assay. Cells (5x10^4/well) were grown in 6-well plates. When cells had reached 90% confluence, cell layers were scratched with sterile plastic tips in a representative region, washed with PBS twice, cells were transfected, media was changed after 6 h, and migration of the cells into the scratch was observed after 24 h.

Cell invasion was determined by Transwell assay. Cells were transfected and cultured for 24 h, then were added to the upper surface of each insert coated with Matrigel (diluted 1:8; BD Biosciences). Cells were incubated for 24 h at 5% CO2 at 37%, non-invading cells were removed with cotton buds from the top chambers, and invading cells were fixed, stained and counted. Three replicates were obtained.

Statistical analysis. Experimental data were analyzed using the GraphPad Prism 5.0 software (GraphPad Software, Inc.,
La Jolla, CA, USA). The Chi-square (χ^2) test was applied in comparisons of enumeration data among groups. Measurement data were expressed as the mean ± standard deviation (SD). Differences in measurement data between groups were analyzed using the t-test or the rank sum test.

Results

Downregulation of miR-141 and upregulation of RUNX1 in PCa tissues and PCa cell lines. We detected the expression level of miR-141 and RUNX1, respectively, in PCa and adjacent normal tissues by qRT-PCR. The expression level of miR-141 was significantly lower and RUNX1 was significantly higher in PCa tissues in comparison to adjacent normal tissues (Fig. 1A and B). In addition, significantly lower miR-141 expression and higher RUNX1 expression were observed in PCa cell lines (PC-3 and DU145) than in the normal prostate epithelial cell line (RWPE-1) (Fig. 1C-E).

miR-141 targets RUNX1. Transcription factor RUNX1 is modulated by a number of miRNAs. Over 60 conserved miRNAs targeting the longest RUNX1 3’-UTR were predicted by bioinformatics tools (miRBase, PicTar and TargetScan), and miR-141 was one of the predicted targets. As revealed by qRT-PCR and western blotting, the miR-141 group significantly downregulated RUNX1 expression in comparison with the normal control group, however, the expression of RUNX1 in the miR-141 + RUNX1 group was higher than that in the miR-141 group (Fig. 2A and B). Furthermore, the dual-luciferase reporter system assay revealed that miR-141 significantly suppressed luciferase activity compared to the control group, whereas the suppressive effect was abrogated when the putative binding site was mutated (Fig. 2C). These results demonstrated that RUNX1 was the direct target of miR-141.

miR-141 upregulation inhibits PCa cell proliferation and cell cycle progression and induces apoptosis. Colony formation and CCK-8 assays revealed that the miR-141 mimic group significantly inhibited PCa cell proliferation compared with the normal control group, and the inhibitory effects on the proliferation of PCa cells were attenuated after the addition of RUNX1 (Fig. 3A and B). Then, we respectively detected the effect of miR-141 upregulation on apoptosis and cell cycle progression. The upregulation of miR-141 induced cell apoptosis (Fig. 4A), and increased the G0/G1 population, decreasing the S phase cell fractions (Fig. 4B) in DU145 and PC-3 cell lines, and addition of RUNX1 attenuated these effects.

miR-141 upregulation suppresses PCa cell migration and invasion. A cell scratch assay indicated that miR-141 upregulation suppressed cell migration compared with the normal control.
Figure 2. Association between miR-141 and RUNX1. (A and B) The mRNA and protein expression of RUNX1 were detected by PCR and western blot assay in different groups. (C) Comparison of the luciferase activities among the control, miR-141, RUNX1-mut and RUNX1 groups. **P<0.01.

Figure 3. Effect of miR-141 overexpression on PCa cell proliferation. (A and B) Following miR-141 overexpression in PC-3 and DU145 cells, cell proliferation was assessed by colony formation and CCK-8 assays. **P<0.01, ***P<0.001.
miR-141 upregulation increases the expression of FOXO1 and decreases the expression of MMP-2 and MMP-9 via decreased RUNX1 expression. FOXO1 and p21 are both significant proteins involved in the regulation of the cell cycle and apoptosis in various cells (13-15). MMP-2 and MMP-9 are gelatinases of the matrix metalloproteinase family, which play an important role in cancer cell invasion and migration (16-18). Hence, we detected the protein expression of FOXO1, p21, MMP-2 and MMP-9 in each group of cells using western blotting to further examine the mechanism of miR-141 upregulation in PCa cell growth and apoptosis. The results revealed that miR-141 upregulation in the DU145 and PC-3 cell lines increased the expression of FOXO1 and p21 and decreased the expression of MMP-2 and MMP-9, and the effects were reversed after the addition of RUNX1 (Fig. 6). Collectively, miR-141 upregulation...
may occur via means of RUNX1 downregulation to increase FOXO1 and p21 protein expression and decrease MMP-2 and MMP-9 protein expression.

Discussion

Prostate cancer (PCa) has become one of the leading causes of cancer-related deaths second only to lung cancer. It is extremely important to find effective diagnosis and treatment methods in PCa. Accumulating evidence has indicated that microRNAs may regulate various cancer processes and be a new source as specific biomarkers for malignancy. Numerous studies have notably increased their focus on microRNA expression profiles in PCa (19-24).

Notably, miR-141 may play an important role in tumor growth and metastasis by targeting the expression of ANP32E (25). Additionally, reduced expression of miR-200c/141 was associated with increased expression of ZEB1 and/or ZEB2 to promote cell migration and invasion in various cancers (26-28). Ectopic expression of miR-141 could serve to inhibit apoptosis in cancer cells through the regulation of the expression of PTEN (29-31). Similarly, our study determined that the expression level of miR-141 was significantly lower in PCa tissues than that in adjacent normal tissues. We also discovered that the expression of miR-141 in DU145 and PC-3 cell lines was significantly decreased compared with human normal prostate epithelial cells. However, overexpressed miR-141 suppressed the proliferation and migration of PCa cells, and induced cell apoptosis. These findings revealed that miR-141 potentially played a restraining role in PCa development.

As a DNA-binding transcription factor, RUNX1 promotes and enhances the expression of target genes by acting as an organizing factor (32). It was reported that the inhibition of miR-378 in MCF7 cells increased RUNX1 levels and cell migration (33). In addition, miR-215 promoted the growth and metastasis of GC cells by targeting RUNX1, and RUNX1 can partially reverse the effects of miR-215 (34). In the present study, we found that RUNX1 was significantly overexpressed in PCa tissues compared with adjacent normal tissues. In addition, when miR-141 was upregulated in DU145 and PC-3 cells, the protein and mRNA expression of RUNX1 were both decreased. We further demonstrated that RUNX1 is a target gene of miR-141 using luciferase reporter and RNA immunoprecipitation (RIP) assays. Moreover, RUNX1 upregulation could antagonize the effects of miR-141 on PCa cells. The absence of the RUNX1 group alone is a flaw in our study.

FOXO1 is a transcription factor involved in apoptosis, oxidative stress, and cell differentiation (35,36). It has been demonstrated that FOXO1 promotes the expression of numerous cell cycle proteins, such as p21^{waf1/cip1} and p15^{ink4b} (37,38). MMP-2 and MMP-9 are key members of the MMP family that degrade and remodel the extracellular matrix (EMC), and play an important role in tumor growth and metastasis. In the present study, we confirmed that miR-141 upregulation increased the expression of FOXO1 and p21, and decreased the expression of MMP-2 and MMP-9 in PCa cells. Moreover, the addition of RUNX1 could reverse these effects. Therefore, we deduced that miR-141 upregulation increased the expression of FOXO1 and p21 and decreased the expression of MMP-2 and MMP-9 levels through RUNX1 downregulation.

In conclusion, our findings revealed that miR-141 could inhibit cell proliferation, migration and induce apoptosis in PCa cells by downregulating RUNX1, indicating that miR-141 may be a novel diagnostic and prognostic marker for patients with advanced PCa.
Acknowledgements

This study was supported by Project Funded by China Postdoctoral Science Foundation (No. 2017T100825, No. 2016M602981) and China Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1601160B).

Competing interests

The authors declare that they have no competing interests.

References